
1

Supporting Julia Users
on NERSC’s Cori
and Perlmutter
Systems

NERSC Data Days 2022
Oct 26-27, 2022

Johannes Blaschke
Data Science Engagement Group, NERSC

2

The Need for High-Performance Glue Code

• Objective: Establish High-Productivity High-Performance
Programming Languages

• Common Design Pattern: High-Productivity Language (eg. Python)
as Glue Code
o At NERSC: Julia, Python + C/C++/CUDA
o Pro: Use appropriate language for algorithms requiring high performance
o Con: N+1-language problem (code maintainability)
o Con: Context switching between interpreted and compiled languages

3

• Growing interest in Julia at NERSC:

Julia Usage Trends at NERSC

Do you plan to use Julia in future?

Do you use Julia locally or at NERSC? Responses %

"I do not use Julia (locally or at NERSC)" 308 74

"I use Julia locally but not at NERSC" 81 20

"I use Julia locally and at NERSC" 24 6.8

"I use Julia at NERSC but not locally" 2 0.5

4

Julia Support at NERSC
• Objective: Enable users to “roll their own” Julia install / environment

• Support different “levels” of Julia users:
a. Provide documentation and use cases
b. Provide system-wide settings using Preferences.jl: user can

load a module, and all packages that
need vendor libs (MPI, HPF5, etc)
gets correctly compiled)

c. Provide compatibility interfaces, eg. MPItrampoline
d. Modules include pre-compiled packages

in the JULIA_DEPOT_PATH
and JULIA_LOAD_PATH

5

Julia Usage Trends at NERSC

229 module users
(04/21-07/22)

• Growing use of Julia modules at NERSC

40

20

0

M
on

th
ly

 U
ni

qu
e

Ju
lia

6

Julia Usage Trends at NERSC

• Julia Users like new versions

• Difficult for center software
release cycle to keep up with
latest Julia version
o Use CI/CD to keep up to date
o Enable users to be productive with

their own Julia versions

7

• Detailed Usage Monitoring: Use startup.jl
to register atexit hook which monitors loaded
packages

• Production-Level Support: Optimize Julia performance (eg. GPUs)
on NERSC systems and integrate support into center operations

• Advanced Workflow Control: Explore how workflow managers
interact with center resource scheduler (eg. Slurm) in situ using API
(eg. PMI2)

• Documentation, Use Cases, and Training

Ongoing and Future Work

8

Noteworthy Julia Packages (for HPC)

• JuliaIO: https://github.com/JuliaIO
JuliaData: https://github.com/JuliaData
Collects many Julia packages around I/O and Data

• JuliaParallel: https://github.com/JuliaParallel
Collects many Julia packages around distributed and
parallel computing

• JuliaGPU: https://github.com/JuliaGPU
Collects many Julia packages used for GPU computing

https://github.com/JuliaIO
https://github.com/JuliaData
https://github.com/JuliaParallel
https://github.com/JuliaGPU

9

Noteworthy I/O Packages

• Pidfile.jl: Provides the linux/unix pidfile mechanism to
hold mutex’es – useful for locking files

• HDF5.jl: HDF5-file support
• Zarr.jl: Julia Zarr (N-D array compressed data) support
• JLD.jl / JLD2.jl: Julia-native serialization support
• Tables.jl / DataFrames.jl / CSV.jl: Tabular data support

• JuliaDB.jl: A distributed database for tables (implemented
in pure Julia)

10

Noteworthy REST and Web Frameworks

• HTTP.jl: Send and receive HTTP requests
• Mux.jl / Oxygen.jl: Routing middleware for HTTP

requests – Oxygen is newer and makes multithreading
easier (considered an all-Julia replacement for FastAPI)

• Genie.jl: Fully-fledged web development framework
(Julia’s answer to Flask)

11

Noteworthy HPC Packages

“Traditional” HPC support:
(https://github.com/JuliaParallel)
• MPI.jl: no explanation needed (it is CUDA/ROCM-aware)
• ClusterManagers.jl: manager HPC resources on the fly

(also note SlurmClusterManager.jl and
MPIClusterManagers.jl for HPC clusters)

• ImplicitGlobalGrid.jl / MPIArrays.jl: implement a global
address space (using the Array interface) built on MPI.jl

https://github.com/JuliaParallel

12

Noteworthy HPC Packages

Tasking (producer-consumer) style HPC support:
(https://github.com/JuliaParallel)
• Distributed.jl / Dagger.jl: task-based parallelism (like

Dask and Ray)
• DTables.jl / DistributedArrays.jl: arrays and tables build

on distributed

ML support: Flux.jl (like pytorch, but different)

https://github.com/JuliaParallel

13

Noteworthy HPC Packages

GPU Support:
(https://github.com/JuliaGPU)
• CUDA.jl / AMDGPU.jl / oneAPI.jl: low-level GPU support

(expose GPU Array interface + helper functions to
manage GPU resources)

• KernelAbstractions.jl: lets you write portable code by
writing portable kernels (a bit “like” Kokkos)

• + Many Many more

https://github.com/JuliaGPU

Demo Time!
(sources: https://jblaschke.github.io/HPC-Julia/)

